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drive the spreading of the wetting phase into the nonwetting phase, have been explicitly
taken into account in the governing equations. Our continuum model uses the generalized
Navier boundary condition (GNBC) to account for the fluid slipping at the solid surface. The
accurate description of the molecular-scale contact-line hydrodynamics makes the numer-
ical simulations cost too much to abide. In this work, we propose an efficient multi-mesh
adaptive finite element method which approximates different components of the solution

Keywords:

Multi-mesh (velocity, pressure and phase variable) on different h-adaptive meshes because of their
Adaptive finite element strongly different local behaviors. That allows us to study the early stage of spreading,
Wetting and spreading wherein the precursor is initiated and developed if the van der Waals forces are strong
Precursor film enough. We find that there is indeed a transition in the spreading behavior across a critical
Diffuse-interface model value of the Hamaker constant. In particular, this critical value is noted to be the one that

separates the partial wetting from complete wetting.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

If a small liquid drop is deposited on a solid, three interfaces come into play, and three interfacial tensions are involved:
Ysvs Vs> and p, which are solid-vapor, solid-liquid, and liquid-vapor interfacial tensions, respectively. The important quantity
is the spreading coefficient S = yg, — 75, — 7. The case where S < 0, is referred to as partial wetting: the liquid remains as a
drop on the solid and reaches an equilibrium shape. For S > 0, the drop spontaneously spreads and tends to cover the solid
surface. Such a situation is called complete wetting. When a spreading liquid completely wets a substrate it forms a very thin
film and the long-range character of the molecular interactions must be taken into account. Ahead of the macroscopic front,
we have seen that van der Waals (VW) forces lead to the formation of a mesoscopic precursor film [4,8]. The precursor films
play a crucial role in the dynamics of the wetting of a solid surface by a liquid. However, understanding the wetting dynamics
involving precursor films has not been an easy task because several distinct length scales are simultaneously presented in
this truly multiscale problem: (i) behind the nominal contact line there is a macroscopic wedge of liquid advancing along
the solid, (ii) ahead of the wedge there is a precursor film extending over a mesoscopic distance, and (iii) the precursor film
ends at a real contact line of molecular length scale. The purpose of the present work is to investigate the early stage of
spreading when the precursor is initiated and developed and the dynamics in the (molecular-scale) vicinity of the real con-
tact line needs to be explicitly taken into account.
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Considerable work has recently been devoted to diffuse-interface models, either in the guise of the Cahn-Hilliard model for
immiscible fluids [2,7,12,13,15] or the van der Waals model for a liquid-vapor interface [11]. The interface is no longer treated
as a mathematical surface of zero thickness, but is rather described by the profile of an order parameter ¢ that is constant in
either phase. As a result, the Navier Stokes equation acquires an extra term involving V¢, which models surface tension,
and an additional equation for ¢ itself closes the system. In [12], a generalized Navier boundary condition (GNBC) is proposed
by Qian et al. for the moving contact line problem. By combining the GNBC with the Cahn-Hilliard diffusive interface model,
they have obtained numerical results that can quantitatively reproduce the molecular dynamics simulation results.

In this paper, we will use the continuum hydrodynamic model developed in [12] to investigate the development of pre-
cursor in the early stage of spreading, driven by the attractive VW forces toward the solid. In our model, we consider a two-
phase immiscible fluid on a clean, flat solid surface, with one phase (the wetting phase) attracted towards the solid by the
VW forces. Since the phase-field function ¢ is to provide the interface information, it is only needed to be fully resolved
around the transient layers with its area much smaller than the full computational domain. The mesh adaptive method is
the most natural way to improve the numerical efficiency [17]. Meanwhile, for the Navier-Stokes equation, if the liquid film
thickness is in the mesoscopic range, one can still ignore the molecular nature of the liquid and consider it as continuous. The
long-range molecular interactions is then described in terms of the so-called disjoining pressure [4] (here the van der Waals
interactions). When the thickness of the film becomes macroscopic, the disjoining pressure vanishes. Although both phase
field and velocity field undergo rapid change across the interface and around the thin liquid film, their behaviors are quite
different. A multi-mesh strategy seems necessary in order to enhance the computational efficiency. In [9], a multi-mesh
h-adaptive algorithm was proposed which approximates different variables on different meshes. Such multi-mesh adaptive
finite element methods are used successfully to simulate the dendritic growth in two- and three-dimensions [6]. Here we
will extend the multi-mesh technique to solve the spreading and wetting problems, where the phase-field function ¢, the
pressure p, and the velocity v are solved on two different adaptive meshes according to their solution behavior.

The paper is organized as follows. In Section 2, we give a brief review of the phase-field model for the contact-line motion
in immiscible two-phase flows incorporating the VW forces. In Section 3, we describe the finite element discretization and
the multi-mesh adaption technique. The numerical results are presented in Section 4. The paper is concluded in Section 5
with several remarks.

2. Continuum phase-field model

The diffuse-interface model has been widely used to describe the continuum hydrodynamics in immiscible two-phase
flows. In particular, it has been used to remove the contact-line stress singularity. The recent discovery of the generalized
Navier boundary condition (GNBC) together with the continuum model proposed in [12] have provided an accurate descrip-
tion for the moving contact-line hydrodynamics in immiscible two-phase flows.

2.1. Governing equations and boundary conditions

For a sharp interface impenetrable by the flow, considering the phase-field ¢ measuring the relative concentration of the
two fluid phases, the pure kinematic condition can be expressed as

¢ +V-V¢=0, (2.1)

which describes the transport of the phase field by the flow. The dynamics of ¢ in a diffuse-interface description can be re-
laxed (or approximated) using either the relaxational Allen-Cahn equation or the diffusive Cahn-Hillard equation. In the fol-
lowing, we choose to use the Allen-Cahn dynamics whose numerical treatment is simpler than that of the Cahn-Hilliard
equation which involves fourth-order derivatives. It is well known that, being a continuity equation, the Cahn-Hilliard equa-
tion treats the phase field as a conserved quantity, while under the Allen-Cahn equation the phase field is not conserved.
Therefore, a Lagrange multiplier is introduced to the Allen-Cahn equation to enforce the conservation of ¢ [5,10]. The mod-
ified Allen-Cahn equation reads:

b+ V- Ve = —My[u+ A(t)], % /Qd)dx =0, (2.2)

where M; is a positive parameter responsible for the rate of relaxation, yt = —KV?¢ + f'(¢) is the chemical potential with
f(¢) = —¢*/2 + ¢*/4. A(t) is the Lagrange multiplier, which can be derived from

10 =g | @~ e [ o.gar]. 23)

The two coupled equations of motion are the convection-diffusion equation for the phase field and the Navier-Stokes equa-
tion in the presence of the capillary force density as proposed in [12]. To facilitate the numerical computation, the governing
equations and boundary conditions are non-dimensionalized, with ¢ scaled by |¢. | = \/7/u, lengths by ¢ = /K, velocity by
the reference speed V,, time by ¢/V,, pressure/stress by #V,/¢, and force density by #V,/¢%. The Lagrange multiplier is scaled
by K|¢.|/&%. The dimensionless equations are
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¢

STV Vo = —Ly[-V2—d + ¢° + A(D)], (2.4)
R{g‘; v Vv }:—Vp+V2v+B( 26— ¢+ 6V +1, 2.5)
V.v=0, (2.6)

where f = {f,f2}7 is the external force. The boundary conditions at the solid surface are the impermeability conditions
Oppt =0, v, = 0, the relaxational condition for ¢

o B V2n )
at V0 = = Vs [(’)nd) ——g ¢S 0 cos (7” , (2.7)
and the GNBC for v,
o V21 )
m = —(OnVr + O Vn) + B|On¢p — 5 cos 0 cos <7> 0. (2.8)

The five dimensionless parameters that appear in the above equations are

o Ly= M which controls the rate of interfacial relaxation;

e R= ”VOC which is the Reynolds number;

e B= urnzvo N_W , which is inversely proportional to the capillary number #Vy/7y;

o V= "‘,—0 which is the relaxation parameter;

o Li(¢) = ﬁ(% Is( ‘/’ , which is the slip length. Here $(¢) = 15 2B, + ”‘” B,, with f; and , being the slip coefficients for the ¢,

and ¢_ phases, respectlvely

The values of the dimensional and dimensionless parameters are given in Tables 1 and 2.
2.2. van der Waals interaction

If the spreading liquid film thickness is in the mesoscopic range, the long-range character of the molecular interactions
must be taken into account. In our models, we choose the non-retarded van der Waals interactions. The potential energy
density of a liquid film spreading on a solid wall varies as

A 144
WO Sy b 2

Here A is the so-called Hamaker constant, b is a small distance of molecular scale, and (1 + ¢)/2 ensures the VW potential to
be present in the wetting phase of ¢ = 1 only. The energy of a film increases as the thickness decreases and the van der Waals
interaction has a thickening effect. The corresponding VW force density is obtained from dW(y)/dy as

A 144
fvw(}’):—m7~

Here the fluid is in the half space of y > 0, and the molecular distance b arises from a void layer between the boundary of the
fluid (y = 0) and the physical solid surface below, caused by the short-range repulsive molecular interactions between fluid
and solid. A molecular length a is defined via a®> = A/67y. The dimensionless VW force density is

(2.9)

(2.10)

Table 1

Parameter values determined from MD simulations and used in continuum models.

p ~0.81m/g> n ~ 1.95/me/a?
sy =n/pr~130 lo=n/py~130
¢~0330 y ~ 5.5¢/0%

M; ~0.210?% /y/me I' =~ 0.660/v/me
o] =1 cosfs =0

Table 2

Dimensionless parameter values evaluated with Vo = 0.25,/¢/m.

2 R B Vs 2
5.0 0.03 12.0 5.0 3.8
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__ A 1+4¢

where A = 4v/2Ba?/¢* is a dimensionless parameter.

(2.11)

3. The adaptive finite element solution on two meshes

In this section, we first derive the finite element approximation for our simulation model Egs. (2.4)-(2.8). We then de-
scribe the adaptive multi-mesh technique for the Cahn-Hilliard Navier-Stokes equations.

For simplicity, we assume that Q is a polygonal domain. Let 7 be a subdivision of Q into simplexes (triangles or tetrahe-
dra). As has been mentioned in the previous section, we plan to discretise the equations for ¢ and p, u on different meshes to
explore the potential of different properties of ¢ and p,u. Let us denote these two meshes with 7, and 7, respectively,
which are generated from the same background triangulation 7° for Q. Both triangulations will change in time adaptively
with the numerical integration we use the notations 77; and 7' for the corresponding triangulation at time t,,. For the phase
field, we define the piecewise linear finite element space V;'(7y') with Ny’ as its dimension. For the NS equation, we adopt the
so-called (P;isoP,) — P; elements where the pressure is piecewise linear, while the velocity has the same number of degrees
of freedom as in the P, case but it is piecewise linear over a suitable decomposition of each triangle. If we refine 77} uni-
formly once and denote the refined mesh as 7/, we can define piecewise linear finite element space Vy/(7,') with N’ as
its dimension for the pressure and define piecewise linear finite element space V}'(7}) with Nj as its dimension for the
velocity. Then we consider the finite element approximations of unknown functions ¢,(77) and p, (7)), uy(77/) as

Ny
bh = HNi(T}), (3.1)
i1
and
Ny NP
w= > wN(TI), py= S pN(T), (3.2)
i=1 i=1

where {¢,»}fi”17 {p,—}f.vjl and {u;}", are the coefficients for phase-field variable, pressure variable and velocity variables, respec-
tively. {N,-(’T’(l')}ﬁ"1 , {Nl-(’Tp’")}?'j] and {N;(T™)}™ are the piecewise linear finite element basis for Vi(Tg), Va(T ) and Vi (T)).
We note that 7/ is obtained from refining 7' uniformly once.

3.1. The finite element discretization

The finite element solution of the Navier-Stokes Egs. (2.5) and (2.6) incorporating the GNBC is to find u; (V,,(Tf,))2 and
Pr € Va(T,) such that

R/ <%+uh~Vuh> ~v,,dQ+/ Vuh-Vvth—/phV‘vth
o \ Ot Q Q

:/Qf'vth—l—B/g/thd)h 'vth—/F[ﬁs(d)h)}’]usr’_'}l’vmdf

+ B/r (c%d)h - ? cos 67 cos (%) afth) vendl, YV

€ (Vu(T}))%, (3.3)

uv g dQ =0, Vg, € Vy(T)). (3.4)
Thanks to the fact that V?u = V(V -u) — V x V x u, we have

/QVph -Vq,dQ = —R/Q(uh -Vuy) - thdQ-s—/Qf -Vq,dQ — /mn xV xu, Vg, + B/Q,u,,mbh -Vq,dQ, (3.5)

where

/[mn xVxu,-Vq, = / ((vx — uy)(nyq, — nxq,,)dl. (3.6)

0Q
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The weak form of the modified Allen-Cahn equation is given by

0
[ (G Vo Jwde + £ [ Gy Vude

-1 <5\¢’1 +uy - V¢h> +%§ cos 67 cos < ¢“>} 70 (3.7)

=Ly L(‘Ph — ¢p — YdQ + ﬁd/ Bt

We introduce the following matrices and vectors:
K, (i,J) :/QVNI-(TP)-VN}-(Tp)dQ, 1<i,j<N,,
Fy(uy, ) (i) = —R/Q(uh V) - VN(T,)d2 + /Qf CUNI(T,)dQ — /mn <V x Wy - VNY(T)
+B/¥uhv¢h-v1v,-(7p)d9, 1<i<N,,
Mu(i,j) = , Ni(Tu)Ni(T)dQ, 1<1i,j< Ny,
Ku(ivf):/QVN,-(TH)-VN]-(Tu)dQ, 1<1i,j < Ny,
Bu(wi)(1,)) :/QWh~VN1-(Tu)N,-(Tu)dQ, 1<i,j <Ny,
D, (i.j) :/QVN,-(TM)N]-(Tp)dQ, 1<i<N,1<j<N,,
MiG) = [1Eo] NATON(TIAr. 1< 05 < N,

1):/1” dQ+B/ ,uha(/)”N( dQ+B/r <8n¢h?c050§“rfcos (”(bh)aﬂph) (TodlL, 1<i<N,,
F2 (up)( /f2 )dg+5/szu,1£Ni(Tu)dQ, 1<i<N,
M, (ij) = /Q N(TN(T )2, 1<ij<N,,
K, (i,j) = vai(7¢).ij(7¢)dg, 1<ij<N,
Bowa) (i) = [ wh VNATON/(T,)d2. 1< 1j <N,
Mg(i,j):/I_N,-(m)ij,)dQ, 1<i,j <N,
B wh)(iJ) = [ wh VN(T,N/(T a2 1<1j< N,
Fo(n)() = La [ (60— 6 = INAT A2+ V, / g cos0cos (ST )T, 1<i<N,

Then the whole system can be written in algebraic form as

KyP = Fp(uy, ¢p), (3.8a)

RM, ddi MIU' + RB,(up)U' + K,U' = DIP + Fl (uy, ¢y), (3.8b)

RM, d;’t  RBy(U)U + KyU? = D2P 4 F2 (), (380)
L do

(M -+ 5207 ) G2+ (Butwn) + B )0+ LK@ = Fu () (3.84)

The flow chart for the multi-mesh adaptive finite element algorithm is the following:

Prepare the background mesh 7°(Q);
Set the initial value for ¢, and u; and t = 0,m = 0;
Obtain two initial meshes Tg and Tﬁ;
while t < T
do Solve the algebraic problem ((3.8)) to obtain u?*!, p™*! and ¢j*';
if the meshes have not been updated for N steps;
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then Update mesh 7, and ¢*;
Update mesh 7, and u"*';
sett=t+dotand m=m+1;

where U = [uy],P = [p;] and ® = [¢;] are the unknown vectors. Here we use the semi-implicit Euler scheme for the temporal
discretisation. In the above algorithm, all the algebraic linear systems are solved by algebraic multigrid method [1,3], which
works quite well and often needs only 3 or 4 multigrid iterations.

3.2. The adaptive finite element solution with two meshes

The algorithm described above is implemented using C++ programming language and AFEPack, which is a common pur-
pose adaptive finite element package with flexible data structures.

Since different meshes are used to approximate ¢ and p,u, there exists a technical problem on how to calculate the
numerical quadratures involving both meshes for ¢ and p, u. This is rather complicated when computing the coupling terms
in the system (3.8). Thanks to the hierarchical type mesh refinement algorithms for two-dimensional triangle mesh, these
numerical quadratures on two meshes can be calculated efficiently because of the fact that the two meshes are based on
the same background mesh and the intersection of any two different elements from different meshes is either empty or
the smaller one. Thus the numerical quadratures on each element in above discretised formulas can be calculated efficiently
after running over each intersection of such elements pairs [9], which can be done smoothly with the functions provided by
AFEPack.

3.2.1. The mesh adaptation techniques

The main feature of our algorithm in mesh adaptation is that we use two different meshes for ¢ and u, while the common
adaptive method has only one single mesh. A reasonable error indicator is important for the mesh adaptation. Generally, a
posteriori error estimators are used. There are many ways to derive an effective a posteriori estimator. One simple choice is
based on the jump of gradient on the interface of two adjacent elements and the patch recovery technique [18] is the most
used technique in practical computing. Plenty of excellent work have been done on this subject. More details on a posteriori
error estimate can be found in [16]. In our computation, we adopt the L, norm of the jumps of finite element solution on the
element boundary for both meshes. For example, if ¢, is the finite element solution in an element T € 7, its heuristic error
indicator can be chosen as

o= (5 [ )

where [-] denotes the jump on the element boundary, h is the length of edge e. In fact, the above formulation is a resid-
ual based explicit L, a posteriori estimator for elliptic operator as given in [16]. This indicator is shown to be very effec-
tive by our numerical experiments, though there is no theoretical veriﬁcation for the convergence of the solutions.
VT € T,, the corresponding four elements of 7, are denoted as T;,0 <i < 3. Similarly, the following indicator is em-
ployed for u,

h) = h3
T(ul ) (ee@T /

The strategy for mesh refinement and coarsening that we adopted is the fixed threshold rule (see such as [16,14]). The fixed
threshold rule, which is easy and stable in many cases, is to equi-distribute the errors on each element by ensuring the ele-
ment error indicators #; satisfying

3¢>h

Juss s [ )

i=0 ecdT;

0-tol <1y < 0-tol,

where tol is the prescribed tolerance and 0 < 0,0 < 1 are two constants. As a result, it is sufficient to refine the elements
where 7, > 0tol and coarse the elements where #; < 0tol. In practice, the tolerance is often chosen as

1/2
tol = <Z 02 /N> .

tea

In fact, we observe that the choice of tolerance is not so sensitive to the convergence of adaptive algorithm in our simula-
tions. However, it can affect the density of elements at the interface, thus one can control the minimal element size near the
interface by adjusting the tolerance to a certain value.
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Fig. 1. Couette flow: u, profiles at different y planes (left) and pressure variation (right), note the fast variation across the interface.

4. Numerical results
4.1. Comparison with MD simulation

We first validate our multi-mesh algorithm by reproducing the results obtained in [12]. The two immiscible fluids are
confined between two parallel walls separated along the y-direction. Moving the top and bottom walls at a constant speed
Vin the £x-directions, respectively, induces the Couette flow. We consider the symmetric case in our simulations. That refers
to identical wall-fluid interactions for the two fluids, which leads to a static interface with a 90° contact angle. We measured
the slip velocity relative to the moving wall u,. Our algorithm quantitatively reproduces the interface and velocity profiles
from the results in [12], especially the near-complete slip of the contact line and the fast pressure variation (Fig. 1). The com-
ponents of the solution, velocity parallel to the wall and phase variable, show a very different local behavior, see Fig. 2. The
phase field ¢ is constant outside of the narrow interface band, where the phase transition occurs. In order to track the inter-
face, the mesh for ¢ must be refined in the interface band while outside the interface band the mesh can be rather coarse
(also see Fig. 7). The velocity u is very smooth except that the gradient changes rapidly around the interface. So to resolve

PR ERA
LAVAVAYAVAVATATAS
AVAVAVAVAYAYAY)

000

Fig. 2. Couette flow: profile of velocity and phase field (top); adaptive mesh for phase field ¢ (middle); adaptive mesh for velocity u (bottom).
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its behavior, a much coarser mesh is needed in the interface band than that for ¢. On the other hand, for accurate solution of
the velocity field, the mesh needs to be sufficiently fine enough in the rest of the domain (also see Fig. 6).

4.2. Precursor simulations in spreading

Numerical results have been obtained for the spreading of wetting phase over a rectangle two-dimensional domain of size
Ly x L, = 1024 x 128. We use the initial condition

Ro — |x — (0.5Ly, 0)\)
\/j ’
which represents a half-circle shaped fluid-fluid interface with X, = (0.5L,,0) as the center and R, as the radius. Here the
wetting phase (of ¢ = 1) is initially put in a half-circle region {|x — Xo| < Ro}. Because of symmetry, only the right part of

the whole domain, [0,0.5L,] x [0,L,], is considered. The equations are discretised on two different adaptive meshes as de-
scribed in last section. The step of time-integration is taken to be At = 1.0 x 1072.

¢(x,0) = tanh ( (4.1)

4.2.1. Precursor film in development

Fig. 3 shows the time evolution of the fluid-fluid interface for A = 400 and b = 1.5¢. The results obtained demonstrate
several features that are found in almost all the calculations performed in the regime of complete wetting [4,11]. As soon
as the VW interaction is turned on, there is a local, fast deformation of the interface immediately above the real contact line.
As the wetting phase is pulled toward the solid, its base has to expand and penetrate into the nonwetting phase. As the VW
force takes effect only in a narrow range due to the (y + b)~* dependence, this penetration takes place near the surface, with-
in a distance of a few b’s. The near-surface penetration continues further into the nonwetting phase and a precursor film is
formed which develops progressively ahead of the nominal contact line, i.e., the macroscopic edge of the spreading droplet.

4.2.2. Transition from partial wetting to complete wetting

The free energy per unit area of a liquid film of thickness h on a flat substrate, includes a contribution from the solid-li-
quid interfacial tension 7y, a contribution from the liquid-vapor interfacial tension y and a contribution due to the long-
range molecular interactions, van der Waals interaction,

h A
Viwlh) = /0 4 [_ 6m(y + b’

which quickly saturates at Vyy(c0) = fA/12nb2 for h > b. The spreading coefficient, which takes into account both the
short-range and long-range interactions, is given by

A A
12n(h +b)> 12nb*’

(4.2)

2
S="7Ysy — [Vs. + Viw(o0)] —y = pcos b + -y = <c0505+2a?—1>y. (4.3)

12nb°
The value of S = 0 separates the regime of partial wetting and that of complete wetting. A sufficiently strong VW interaction
leads to the complete wetting with S > 0.

The qualitative difference between the final equilibria reached in the two distinct regimes is in fact reflected in the
spreading dynamics. As shown in Fig. 4, there is indeed a transition in the spreading behavior across some critical value

60

N
\\ Hamaker= 400
FON\\ Time =0:50:500

o\

20| N

100 150 200
Fig. 3. The time evolution of the fluid-fluid interface calculated for A = 400 and b = 1.5¢. The time interval separating the neighboring curves is At = 50.
The development of a precursor film is clearly seen.
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Fi

g. 4. The distance covered in spreading, plotted as a function of A for different times time = 100 : 100 : 600.

100 - v .'

150

50 |- Streamtraces Pressure

wedge

precursor film

o\

0 50 100 150 200 250 300

Fig. 5. A precursor film developed ahead of a droplet in spreading, obtained for A =500 and b = 1.5¢ with t = 300. Inset: left one is the streamtraces
around the tip area and right one is the distribution of the pressure on the solid-liquid interface.

of A, hereafter denoted by .A., which corresponds to S = 0 within numerical error. The values for 4. determined in Fig. 4,
Ac ~ 300 for b/¢ = 1.5, agree with those evaluated from A = 4v/2Ba?/&* with a2/2b2 =1 (which corresponds to S = 0 for
cos 0s = 0 according to (4.3)).

4.2.3. Slipping contact line

As shown in Fig. 5, a thin precursor grows ahead of a wedge of a relatively larger scale. The long, flat part of the film is
clearly seen, which is truncated quickly at the real contact line when the thickness becomes comparable to b. The advantage
of the present model is that the GNBC has been used to account for the fluid slipping at the solid surface in the vicinity of the
MCL. This allows an accurate description of the molecular-scale hydrodynamics in this small region. The inset of Fig. 5 shows
the velocity field around the tip of the spreading film, where large slippage is clearly seen.

4.2.4. Multi-meshes
Figs. 6 and 7 show the velocity and phase-field meshes, 7, and 7, at the time ¢ = 500 with a zoom into the interface
region. Fig. 8 shows the corresponding degrees of freedoms (DOFs) for phase field ¢ and the velocity u separately over time.
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i

Fig. 7. Phase field mesh (grid points) and zoom at t = 500.

DOF(u) [ J DOF(9)
7.0E+03 N —- 1.2E+04
F DOFs of phase field mesh ——m= 1
6.0E+03|- J1.1E+04
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Fig. 8. DOFs over time are shown for ¢ and u separately.

The results have shown that the distributions of the meshes for the phase field solution and velocity field solution are very
different. Near the interface, finer mesh is needed for the phase field than that for the velocity field. On the other hand, a
much coarser mesh is needed away from the interface for the phase field than that for the velocity field. This justifies the
use of the two mesh adaptive method.

5. Concluding remarks

In this work, we have developed a multi-mesh adaptive finite element method to investigate the wetting dynamics, focus-
ing on the development of the precursor film and the dissipation therein in the early stage of spreading. We use the diffusive
interface model incorporating the long range VW interaction effect together with the recently discovered generalized Navier
boundary condition (GNBC) for the simulations. The computational cost can be saved significantly using our multi-mesh
adaptive technique. We have studied the early stage of spreading, when the precursor is initiated and developed if the van
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der Waals forces are strong enough. We find that there is a transition in the spreading behavior across a critical value of the
Hamaker constant which separates the partial wetting from complete wetting.
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